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THE VLSI OPTIMALITY OF THE AKS SORTING NETWORD.

G. Bilardi and F. P. Preparata .
Coordinated Science Laboratory D1.t

University of Illinois at Urbana-Champaign

Introduction

) Ajtai, Komlos, and Szemeredi (l] recently proposed a sorting network

(referred to hereafter as the AKS network),'of O(nlogn) comparators and

O(logn) depth. Their construction is of great theoretical interest, for

it shows that O(nlogn) comparisons suffice to sort n elements, even under

the constraint that comparisons be nonadaptively executed in O(logn) parallel

stages. At present, the AKS network appears not suitable for practical

*. implementations, due to the large value of the constants; however, improve-

ments are conceivable that could make the network more attractive for

real-world applications.

It is therefore natural to ask what is the performance of the AKS network

I in the synchronous VLSI model of computation which has been proposed [2] to

capture the essential features of planar very large scale integration as a

computing environment.

In this model it is known that any chip capable of sorting n words of

S2 2 2
length q - (1+)logn, with * > 0, must satisfy the relationship AT - 4(n log n),

where A is the hip area, and T is the computation time. (This lower bound

*" has been originally obtained by Thompson [21 under the word local restriction

(all the bits of the same word enter the circuit at the same input port).

" Recently Leighton [3] has shown that the lower bound holds valid even for

non-word-local designs.

-. this work has been supported in part by the Joint Services Electronics Program
* under Contract N00014-79-C-0424 and by the IBM Predoctoral Fellowship Program.
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Many designs of VLSI sorters have already been proposed (see Thompson

[41 for a survey). We mention here the ones that achieve minimum area

A - 8(n2 log 2n/T 2 ) at their computation time T:

- the mesh-connected [1,5,6] bitonic sorter [7], for T - 0(rn).

- the pleated-cube-connected-cycles (PCCC) [8] also implementing

bitonic sorting for T in the range [n(log 3n),O(,r'_Toj)1.

- a hybrid architecture based on the cube-connected-cycles and the

orthogonal trees interconnections [9], which implements the• ..

enumeration sorting schemes of [101, and works in minimum computation

time T - O(logn).

- a hybrid architecture consisting of orthogonal trees and permuter

networks [3], which implements a generalization of the even-odd sort

[71, and also works in time T - 0(logn).

It is then interesting to see how the AKS algorithm, which is radically

different from any other known sorting paradigm, compares with more classical

sorting methods in the VLSI environment, where the heaviest demand cf resources

usually comes from communication, rather than from computing requirements, so

a-. that a small number of processing elements does not necessarily imply a good

performance.

In this note we show that the AKS sorting network can indeed be laid out

in area A - O(n2), while maintaining an 0(logn) computation time, thereby

establishing its optimality in the VLSI model of computation.

.
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Layout of the AKS Network

The original description [1] of the AKS network (with n inputs) is given

in terms of an n-node graph G - (V,E), whose nodes are registers, and whose

edges are comparators. The set of edges E is partitioned as E - E U E U ... UE,
1 2

where each of the E 's is a (possibly partial) matching on V, and N < B logn for
5

some (very large) constant $. Since each E(s - 1,...,N) is a (possibly

partial) matching, all of its comparators can be simultaneously active. Thus

• ithe AKS sorting algorithm can be described as follows:

- begin for s:- 1 to N

for all (x,y) E Es, and x < y pardo

(R(x) ,R(y)) :- (min(R(x) ,R(y)) ,max(R(x) ,R(y)))

end

where R(x) is the content of the register associated with node x.

Since the embedding of a graph in a planar grid requires nodes of bounded

degree, we shall modify the original description as follows. According to a

scheme described by Knuth (Il1, we consider n lines that run parallel, say,

. to the horizontal axis. On line r (r - 1,2,...,n) there will be N processors

p[r,l],...,p[r,N], whose capability will be specified below. For each V

* s - 1,2,... ,N, and for each (x,y) E Es, we connect processors Pfx,s] and

P[y,s] by a vertical line. Such vertical line supports the execution of the

comparison-exchange (R(x),R(y)) : (min(R(x),R(y)),max(R(x),R(y))), where

R(x) and R(y) are respectively the operands stored in P(x,s] and Ply,s].

Once the comparison-exchanges specified by E have been executed, the
s

. results will be forwarded on each line (that is, from P(x,s] to Pfx,s+ll,

xR

..- .
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This basic layout can be further specified by selecting the degree of

parallelism of the operand transmission. Due to the amenability to

pipelined operation, the q-bit operands are fed in bit-serial fashion

*starting with the most significant bit and each processor is equipped with

a serial comparator. In each comparator, as long as the two inputs agree,

they are transmitted to the next processor on the same line. As soon as a

* bit discrepancy is detected, a switch is set and, from then on, the remaining

substrings of each of the operands will follow a fixed path independently

of their value.

Thus we have ensured that the AKS network works in T -O(logn+q) -O(logn)

time, and we turn our attention to the layout area. We first observe that

both the horizontal, and the vertical lines are of O(M width. It is then

simple to conclude that the height of the entire layout is O(n). On the

=other hand, any matching of n lines can be easily laid out in (at most) n/2

vertical tracks of constant width, by using a track for each edge of the

matching. Since there are N -O(logn) matchings to be cascaded in the AKS

2n etwork, it is readily proved that O(nlogn) width, and therefore O(n logn)

area, suffices for the layout. A closer analysis however, reveals that many

o of the matchings Ell .. . S N are such that many edges can be laid out, without

* overlap, in the same vertical track, yielding the conclusion that the bound

for the area can be lowered to 0(n 
2)

To establish this claim we introduce the following top-down description

of the layout of the AKS network. The layout could be analyzed as the assembly

of suitable simpler building blocks, whose hierarchy is illustrated in Figure 1.

Each of these building blocks will now be described in detail, in a top-do

fashion.

isdtceasic*sstad rmte on, the reaiig .
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AKS network

1 + 3 logn

cherry stage

n-NEARSORTER

* log(l/n)

--HALVER

"C

1-factor network
(matching)

Figure 1. Hierarchy of building blocks of the AKS network. The depth is
expressed as the length of the cascade of blocks of the
immediately lower level.

d

(1) The AKS network on n -2 inputs is the cascade of (l+3d) stages,

called cherry stages, and denoted by S0 ,S ,S12 ,S13,.. SdlSd2,Sd

(Figure 2).

--- . - - *, .

Id d

. UA

U S S S12 13 Stl t2 t3 dl d2 d3
T " 0 a..
S U

T

I' - -•- - -

dFigure 2. The AKS network on 2 input is the cascade of (1+3d) cherry stages.
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(2) To each cherry stage St,h (t - 1,...,d; h - 1,2,3) there corresponds a

partition P of the integers (lines) 1,2,...,n. Although the assignment
c ,h

of the integers to the partition blocks is too complicated to be repeated

here (the reader is referred to [11), what is important now are the

properties of Pt,h that are relevant to the layout. Specifically, Pt,h

consists of the following (disjoint) blocks:

21: P - P3 - {T (2i'j): i - 0,1,... ,L(t-l)/24; j - 1,2,..-,2 2 1 }

21-1Pt = {T (2i-l)j): i - l,2,...,Lt/2J; J - 1,2,...,2 2  U IT (-1,0)}.
t2 t

To stage S0 there corresponds the trivial partition P consisting of one
0 0r

L block only.

If we now define as span(T) the smallest interval of {l,... ,a} containing

T =,l,...,n}, we have the following properties:

(1) For given t and i, and j'# j, span(T (ij)) n span(T (i,j'))

(2) 1span(T (i,j))l < n/2 for every t and j.

(3) ; T (ij)i < " n/ 2i Ait for every j, where y and A 2 > i are

constants.

The lines numbered by the integers in a block T t(i,j) are involved in a

network of comparators called an n-nearsorter (see Figure 3). Properties (1) and

(2) show that for any fixed t and i, all 1-nearsorters corresponding to

(T,(i,j) : j - l,2,...,2 i  } can be laid out in the same vertical strip

as shown in Figure 3. Moreover, all nearsorters in the same cherry stage

,. can operate in parallel (indeed, no two share a line).
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C T((t-1.1T T(2tI"))
TT (.-2, t1-r (Z.I.) ...

[-'" T (1,1)

r (2.2)
7C

T (2.3)
( :, . -

T7 (t 'l '2= 'L) I

(C-

;. ti St3 St2 .

• I .

S!.1 5t

Figure 3. Typical cherry stages S and S (t is even in the figure).
ti t2

The region labelled T (i,j) correspond to the layout of an
n-nearsorter. -

(3) An rI-NEARSORTER, corresponding to block T (i,j), has the structure
t

of a full binary tree of depth log2 -. Each node of this tree is a
,2

network of comparators, called an e-HALVER (see (4)), encompassing an

interval of lines (Figure 4). If m ,IT (i,j, then the root encompasses
ttr c

m lines; if a node v of the tree encompasses s lines, then

its two offsprings encompass each (approximately) s/2 lines.

"" 
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rm inputs
m/4 - -HALVER

m/2 £-HAL

m inputs
e-HAL

lines of

T (i~j)- - @t

c-HAL VER

m/2

c-HAL

Figure 4. An n-NEARSORTER is a full binary tree of E -HALVERS.

(4) An S-HALVER stage on m lines (with c < n/(log I/n)) consists of the

cascade of c (where c is a function of E, but is independent of m)

one-factor staSes (matching stages). (When the network is viewed as

a graph G - (V,E), i.e. when each line is shrunk to a single node, the

e-HALVER becomes an expander graph on the set of nodes on which its

edges are incident.) (See Figure 3.)

S - -
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1 O h 00 c

Figure 5. An e-HALVER is a cascade of a constant number of one-factors.

(5) Firally a one-factor stage on m lines is a matching between the tower

U and the upper half of these lines, and it is a subset of exactly one

of the sets (E s =1,.,}introduced earlier. (See Figure 6.)
S
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Now we proceed, bottom-up, to analyze the area of the network.

() A one-factor stage on m lines can be laid out in O(m) length, by

allocating a vertical track for each of the m/2 edges. The height

of the layout will be proportional to the distance between the

topmost and the bottommost of the input lines.

(ii) An e-HALVER has a length of 0cm); c is the valence of the e-HALVER.

(iii) An ri-NEARSORTER has a length also of 0(cm), since the length

of the -HALVERS decreases geometrically with the level.

I
(iv) We now subdivide the layout into vertical slabs, with slab(t,i)

containing the nearsorter on sets T t(i,j) for all suitable values

of j. (There are in fact two identical copies of T (i,j) when i is
t

even, but this will only affect constant factors.) From point (iii)

and property (3) it immediately follows that

Z(t,i) = length of slab(t,i) < y 2 1Ait

Then, the total length Z can be obtained by summing Z(t,i) over all the

vertical slabs:

d t d d

Z Z Z(ti) = Z Z(t,i)
t-0 i-0 i-O t-i

d 2 d i __2"__"

< y n Z 21 (1/A) t - i < -( n.
i-0 t=i 7

In conclusion A - height x length- O(n) x O(n) = O(n") as claimed.

I

rv
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